1SQ Quadcopter Repair

Every once in a while even the toughest fighter gets beaten. That’s kind of how I feel about my 1SQ. I broke it last week but in reality it had no right to be working anyway after taking the amount of (accidental) abuse it has seen. This has been a great little toy/trainer but it finally gave in last week and needed a little TLC.

This seemed like a relatively easy fix to begin with, the battery wire had become compromised/frayed over time and finally stopped working altogether. Simple right… just solder on a new wire and connector!!?? Anyway, after removing the board from the aircraft I started to remove the battery wire and the “gunk” they insulate the connection with. During this process I accidentally knocked an adjacent resistor off the board too (the little brown thing). This isn’t looking good, its getting worse!!

IMAG1319

As you can see above, this was now a 3 step fix and one of the soldering jobs looked a little more difficult.

I had to:

  • Remove the old battery leads from the board by heating the solder and pulling the leads out (already completed in the above picture).
  • Reattach the resistor I broke off (this one looked a little scary because the contacts were so small and my thumbs are huge). Pretty sure a machine soldered this the first time.
  • Reattach the positive and negative battery leads through holes in the board and solder them in place.

Hopefully, you can’t really tell but the end result wasn’t exactly what I intended… If you check it out you can see that I have the resistor on a little sideways (circled in red) and I put the negative lead through from the backside of the board to stay away from the resistor (circled in black). At ant rate, the fix works and seems solid so I decided to leave it.

 IMAG1320

Plugged the battery in and everything started working like a charm! **Actually I plugged in the motors wrong to begin with and all my Quad would do is flips… If you have the same behaviour you may want to check your motor connections.  The picture below is correct and can be used as a wiring reference:

IMAG1323

 

 

General Multicopter/UAV Parts List – What do I need?

Building your own multicopter or UAV isn’t too difficult providing you can do a little soldering and source parts which work well together and meet your requirements. There are many online hobby shops which will allow you to order every part you’d need to make and awesome UAV.

In general, every multicopter will need some version of the following parts in order to fly:

Multicopter Parts list:

  • An Airframe – It seems somewhat obvious but you will need a frame on which to build your craft. Whether you build it yourself or buy a frame this part will have a large impact on your craft’s performance. Airframes are available in many different shapes and sizes. Generally at the moment airframes are tricopters (3 props), quadcopters (4 props), hexacopters (6 props), and octocopters (8 props).
  • Flight Controller – the flight controller is essentially the brains of your aircraft.  This equipment takes in sensor details and user input to determine what your craft needs to do. There are many different models of flight controller available; each with different capabilities, features, and sensors.
  • Receiver (or RX) – A receiver flies on-board the aircraft and like the name indicates this piece of equipment receives a signal (user input) from your transmitter and then relays that information to the flight controller.
  • ESC (electronic speed controller) – controls the speed and direction of the motors in response to input from the flight controller. Each motor you are controlling will need a corresponding ESC to control it. ESCs vary greatly in design and specifications. In multicopters these are essential pieces of equipment because your craft maneuvers by varying the speed of each motor independently.
  • Motors – If you’re building something that flies it will need motors to power that flight. Motors come in every conceivable shape, size, and power. Selecting the right motor for your application will depend greatly on the purpose, size, and weight of your aircraft (and propellers).
  • Props (propellers) – Propellers come in almost every conceivable design and size. Selecting the right propeller for your craft is very important because it influences almost every other parts choice you’ll make. Props influence flight time, power consumption, and aircraft flight performance.
  • Batteries – The power source for your aircraft. Batteries come in many many different shapes, sizes, and capacities.  The right battery for you will most likely be determined by the purpose, weight, and intent of your aircraft.
  • LEDs – LEDs are very useful for lighting and flight orientation purposes.
  • Wires -of course you’ll need a few wires to connect everything together.
  • Connectors – wiring connectors are needed for a variety of applications; like connecting your battery to your aircraft in a removable way.

Related Parts:

  • Transmitter (or TX) – a radio transmitter is used to control your aircraft by sending signals from the ground to the aircraft. It doesn’t fly on the craft but its obviously an essential part of the kit.
  • Battery charger – this is somewhat obvious but you’ll need one of these to recharge your batteries for another flight.

There are several online calculator tools which are very helpful in determining if your parts will work together. A great example is the xcopterCalc calculator; this tool allows you to input your parts specs and find out things like power consumption, estimated flight times, parts incompatibilities, etc.  If you are planning to build a multicopter this is a great place to start!

**If you are looking for a specific parts list then please review the RCT800 actual parts list.

Turnigy Receiver Controlled Switch – Wiring Setup

The Turnigy Receiver Switch is a neat little piece of hardware (tiny!) which allows you to turn things like LED lights On/Off from a free channel on your receiver. These are also pretty simple to install and use!

Here the switch itself (its tiny)…

image

The switch is pretty simple and has:

  • 2 Red (positive) Wires
  • 1 Plug for your receiver

So how do you wire this thing anyway?

Its actually quite easy but I will admit that I did this wrong once ;.)

If you check out the wiring diagram below you’ll notice that the correct way to install this switch is by simply wiring it into the positive line of what you are controlling (between the load and the battery). Its easy to install the switch but also easy to over think this too!

image

Here are the step by steps for setting up this switch. I am not going to discuss setting up your transmitter since there are many different models and possible setups:

  • The first step is very easy. Find an unused plug on your receiver and plug in your switch. In this case channel 8 was available.

IMAG1279

  • The next step is still pretty easy. Solder one of the red (positive) wires to your power source/battery/wiring hardness.

IMAG1283

  • Now its time to deal with the 2nd red wire coming out of your switch. The positive wire for anything you are controlling with your switch needs to terminate at this red wire. In this case the switch is controlling 4 sets of LEDs on different parts of the aircraft. I started by lengthening the wire to allow it to reach all the LEDs.

IMAG1284

  • Every installation is bound to be a little bit different however the final wiring setup should look something like the picture below:
    • The switch is secured to the aircraft (circled in purple).
    • The 1st red wire from the switch attaches to the power source/battery (circled in pink).
    • Each negative wire for the LEDs terminates normally as it would without a switch (no change).
    • Now each positive wire for the LEDs only connects to the 2nd red wire from the switch (four connections circled in red).

overall